Составмть условия задачи КАТЯ СОСТАВИЛА 6 ПРИМЕРОВ С ОТВЕТОМ 8 А ВАЛЯ 10 ТАКИХ ПРИМЕРОВ

12.05.2021 Пригласительный школьный этап ВОШ по математике 3-6 класс задания и ответы

1)Вася на следующий день после своего дня рождения сказал: «Жаль, что мой день рождения в этом году не в субботу, ведь в этом случае ко мне бы пришло больше гостей! Но суббота будет послезавтра…» В какой день недели у Васи был день рождения?

2)Кубик повернули вокруг указанной оси так, что отмеченная грань повернулась указанным образом. А в вершину с каким номером перешла точка A?

3)Несколько букв А и несколько букв Б сидели на трубе. После того, как несколько А упало и несколько Б пропало, на трубе остались всего три буквы и между ними произошёл следующий диалог: Первая буква: «Буква Б среди нас одна.» Вторая буква: «Я здесь одна такая буква.» Третья буква: «Букв А тут точно меньше двух.» Оказалось, что каждая буква сказала правду, если она А, и соврала, если она Б. Определите, где какая буква.

4)Замените картинки на цифры так, чтобы суммы по столбцам и по строкам были равны указанным. Одинаковые картинки соответствуют одинаковым цифрам, а разные — разным. Какое число после замены картинок на цифры получится под таблицей?

5)Ваня написал на доске число 1347 . — Смотри! — заметил Петя. — В этом числе каждая из двух последних цифр равна сумме двух предыдущих. — Точно! — согласился Вася. — А сможешь написать самое большое четырёхзначное такое число? Помогите Васе справиться с Петиным заданием.

6)Петя умеет рисовать всего 4 вещи: солнце, мячик, помидор и банан. Зато крайне правдоподобно! Сегодня он нарисовал несколько вещей, среди которых ровно 19 жёлтых, 22 круглых и 17 съедобных. Какое наибольшее количество мячиков он мог нарисовать? Петя считает, что все помидоры круглые и красные, все мячики круглые и могут быть любого цвета, а все бананы жёлтые и не круглые.

7)Катя коротает время, пока родители работают. На листке бумаги она задумчиво в два ряда нарисовала Чебурашек (в каждом ряду оказался нарисован хотя бы один Чебурашка). Потом, подумав, между каждыми двумя соседними Чебурашками в ряду она нарисовала по крокодилу Гене. А затем слева от каждого Чебурашки — по старухе Шапокляк. И напоследок между каждыми двумя персонажами в ряду она нарисовала по Кракозябре. Внимательно посмотрев на рисунок, она поняла, что красиво получились у неё только Кракозябры, и яростно стёрла всех остальных. В итоге родители увидели два ряда Кракозябр: всего 29 штук. Сколько Чебурашек было стёрто?

8)У берега реки покачивался небольшой плот. К берегу подошли 5 мышат весом по 60 г, 3 крота весом по 90 г и 4 хомячка весом по 120 г. Какое минимальное количество граммов должен выдерживать плот, чтобы все звери смогли на нём переправиться на другой берег, возможно, за несколько ходок «туда сюда»? Плот не может передвигаться по реке без гребца.

Видеоразбор заданий олимпиады для 3 класса:

Пригласительный этап ВОШ 2021 по математике 4 класс задания:

1)Поставьте в соответствие каждой букве цифру 1,2,3,4,5 так, чтобы выполнялись все неравенства. К < Н < И < Ж > К > А Разным буквам должны соответствовать разные цифры. В качестве ответа запишите число КНИЖКА.

2)Вторник будет через пять дней после позавчера. А какой день недели будет завтра?

3)Сколько на данной картинке существует прямоугольников со сторонами, идущими по линиям сетки? (Квадрат также является прямоугольником.)

4)Четыре девочки: Катя, Оля, Лиза и Рита — встали в круг в некотором порядке. На них были платья разных цветов: розовое, зелёное, жёлтое и голубое. Известно, что: на Оле было не розовое и не голубое платье; девочка в зелёном платье стоит между Ритой и девочкой в жёлтом; Катя не в зелёном и не в голубом платье; Лиза стоит между Катей и девочкой в розовом платье. Кто во что одет?

5)Напишите наибольшее девятизначное число, в котором встречаются все чётные цифры. (Чётные цифры: 0,2,4,6,8.)

6)Часть цифр в прямоугольнике уже расставлена. Расставьте на оставшихся местах цифры так, чтобы: сумма цифр в каждом столбце была одинаковой; сумма цифр в каждой строчке была одинаковой; сумма цифр в красных клетках была равна сумме цифр в любой строчке. В качестве ответа введите трёхзначное число ABC (т. е. составленное из цифр, оказавшихся на местах букв A, B, C).

7)У берега реки стоит Белоснежка, а рядом с ней 7 гномов в следующем порядке слева направо: Весельчак, Соня, Умник, Чихун, Ворчун, Скромник и Простачок. У берега качается лодка, вмещающая только 3 гномов и Белоснежку. Белоснежка единственная умеет грести. Любые два гнома, стоящие рядом в изначальном ряду, поссорятся без присмотра Белоснежки. Белоснежка должна перевезти всех гномов на другой берег и никого не поссорить. Отметьте всех, кого Белоснежка возьмёт с собой в последнюю поездку.

8)Если в числе 79777 зачеркнуть цифру 9, получится число 7777. Сколько существует различных пятизначных чисел, из которых можно получить 7777, зачеркнув одну цифру?

Видеоразбор заданий олимпиады для 4 класса:

Пригласительный этап ВОШ 2021 по математике 5 класс задания:

1)Саша выписал на доску все двузначные числа, делящиеся на 6, а затем стёр те из них, которые оканчиваются не на 4. Какое наибольшее число в итоге оказалось написано на доске?

2)На столе лежат апельсин, банан, мандарин, персик и яблоко. Их веса равны 100 г, 150 г, 170 г, 200 г, 280 г, но неизвестно, какой фрукт сколько весит. Известно, что: персик легче апельсина; мандарин тяжелее банана, но легче персика; яблоко легче мандарина; банан и мандарин вместе тяжелее апельсина. Какой фрукт сколько весит?

3)На стене висят часы с кукушкой. Когда начинается новый час, кукушка говорит «ку-ку» количество раз, равное числу, на которое показывает часовая стрелка (например, в 19:00 «ку-ку» звучит 7 раз). Как-то утром Максим подошёл к часам, когда на них было 9:05. Он стал крутить пальцем минутную стрелку, пока не перевёл часы на 7 часов вперёд. Сколько раз за это время прозвучало «ку-ку»?

4)На дискотеку по случаю окончания учебного года пришло в два раза больше мальчиков, чем девочек. Маша посчитала, что девочек, кроме неё самой, на дискотеке на 9 меньше, чем мальчиков. Сколько мальчиков пришло на дискотеку?

5)Из клетчатого квадрата 7×7 вырезали голубые треугольники. Чему равна площадь оставшейся фигуры? Длина стороны каждой клетки равна 1 см. Ответ дайте в квадратных сантиметрах.

6)На доске написано одно трёхзначное число и два двузначных. Сумма чисел, в записи которых есть семёрка, равна 214. А сумма чисел, в записи которых есть тройка, равна 75. Найдите сумму всех трёх чисел.

Еще:  Викторина quot Путешествие по Солнечной системе quot

7)Вася хочет расставить в квадратики числа от 1 до 6 (каждое — по одному разу) так, чтобы выполнялось следующее условие: если два квадратика соединены, то в том, который выше, число больше. Сколько существует способов это сделать?

8)В стране 100 городов: 30 из них находятся в горной части страны, а 70 — в равнинной. В течение трёх лет между городами устанавливали авиасообщение. Каждый год в стране открывалось 50 новых авиарейсов: все города случайным образом разбивались на 50 пар, и между городами из одной пары открывался рейс. Через три года оказалось, что из 150 открытых рейсов ровно 23 соединяют пару «горных» городов. Сколько рейсов соединяют пару «равнинных» городов?

Видеоразбор заданий олимпиады для 5 класса:

Пригласительный этап ВОШ 2021 по математике 6 класс задания:

1)Маша расставила числа от 1 до 16 в клетки таблицы 4×4 так, чтобы любые два числа, отличающиеся на единицу, стояли в соседних по стороне клетках. А Саша стёр все числа, кроме 1 , 4, 9 и 16. Какое число стояло в клетке с вопросом?

2)Для приготовления одной порции салата требуются 2 огурца, 2 помидора, 75 грамм брынзы и 1 перец. На складе ресторана есть 92 перца, 6,6 кг брынзы, 180 помидоров и 181 огурец. Сколько порций получится?

3)Витя и его мама одновременно вышли из дома и пошли в противоположные стороны с одинаковой скоростью: Витя — в школу, а мама — на работу. Через 16 минут Витя понял, что у него нет ключей от дома, а вернётся из школы он раньше мамы, поэтому он стал догонять её, увеличив скорость в пять раз. Через сколько минут с того момента, как он понял, что надо забрать ключи, Витя догонит маму?

4)Алексей, Борис, Вениамин и Григорий подозреваются в ограблении банка. Полиции удалось выяснить следующее: если Алексей невиновен, то Вениамин виновен, а Борис невиновен; если Григорий виновен, то Борис и Вениамин невиновны; если Алексей виновен, то Вениамин тоже виновен; если Вениамин виновен, то кто-то из двух — Борис и Григорий — точно виновен. Отметьте тех, кто участвовал в ограблении.

5)В парке проложены дорожки, как показано на рисунке. Двое рабочих начали их асфальтировать, одновременно стартовав из точки A. Они укладывают асфальт с постоянными скоростями: первый — на участке A−B−C, второй — на участке A−D−E−F−C. В итоге они закончили работу одновременно, потратив на неё 15 часов. Известно, что второй работает в 1,2 раза быстрее первого. Сколько минут второй укладывал асфальт на участке DE ?

6)С дерева сорвали несколько апельсинов (не обязательно равной массы). Когда их взвесили, то оказалось, что масса любых трёх апельсинов, взятых вместе, составляет меньше 4% от суммарной массы остальных апельсинов. Какое наименьшее количество апельсинов могло быть сорвано?

7)Петя загадывает четырёхзначное число вида 19∗∗ . Вася последовательно проверяет, делится ли загаданное Петей число на 1,3,5,7,9,11 , и если делится, то Вася платит Пете 1,3,5,7,9 или 11 рублей соответственно. Например, за число 1900 Вася заплатил бы Пете 1+5=6 рублей. Какое наибольшее количество рублей может получить Петя?

8)Существует ровно 120 способов закрасить пять клеток в таблице 5×5 так, чтобы в каждом столбце и в каждой строке была закрашена ровно одна клетка. Существует ровно 96 способов закрасить пять клеток в таблице 5×5 без угловой клетки так, чтобы в каждом столбце и в каждой строке была закрашена ровно одна клетка. Сколько существует способов закрасить пять клеток в таблице 5×5 без двух угловых клеток так, чтобы в каждом столбце и в каждой строке была закрашена ровно одна клетка?

Источник



Решить задачу катя составила 6 примеров с ответом 8

Вопрос по математике:

КАТЯ СОСТАВИЛА 6 ПРИМЕРОВ С ОТВЕТОМ 8, А ВАЛЯ — 10 ТАКИХ ПРИМЕРОВ. НА СКОЛЬКО БОЛЬШЕ ПРИМЕРОВ СОСТАВИЛА ВАЛЯ, ЧЕМ КАТЯ?

  • 03.02.2016 21:47
  • Математика
  • remove_red_eye 12548
  • thumb_up 40
Ответы и объяснения 2

Ответ. Валя составила на 4 примера больше, чем Валя.

  • 04.02.2016 03:44
  • thumb_up 28

Ответ:Валя составила на 4 примера больше, чем Катя

  • 05.02.2016 06:44
  • thumb_up 23
Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Математика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Математика — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов.

Источник

Решение задач с помощью уравнений

Тема урока: § 6. Решение задач с помощью уравнений. Приведены все необходимые и достаточные сведения для решения текстовых задач с помощью составления уравнений.

Введение

В школьной математике есть целый кладезь текстовых задач, которые решаются универсальным методом построения уравнения (модели) исходя из условия.

Сам факт того, что огромное количество самых разнообразных задач поддаются решению с помощью составления линейного уравнения, говорит нам, что метод решений является действительно универсальным.

Обычно условия задач удается перевести на математический язык. Полученное уравнение — это следствие перевода нашего условия с русского языка на язык алгебры. Зачастую фактической стороной повествования задачи является описание реальной ситуации, какого либо процесса, события.

Чтобы получить ответ — уравнение нужно решить, полученный корень уравнения будет являться решением, разумеется необходимо еще проверить, не является ли результат противоречивым относительно условия.

Алгоритм решения текстовых задач с помощью уравнений

Для решения задачи с помощью уравнения делают следующие действия:

  1. Обозначают некоторое неизвестное буквой и, пользуясь условием, составляют уравнение.
  2. Решают уравнение.
  3. Истолковывают результат.

Примеры решений

Пусть $x$ — количество монет в мешке, а значит в сундуке: $3x$ монет. После того, как из мешка переложили $24$ монеты, в сундуке стало: $3x+24$, а в мешке $x-24$. И если в сундуке их стало в $7$ раз больше чем в мешке, то имеем: $3x+24=7(x-24)$.

Еще:  Плинтус из МДФ Область применения советы по уходу

Ну вот мы и составили уравнение (математическую модель), осталось решить уравнение относительно $x$ и записать ответ.

Решим полученное уравнение: $3x+24=7(x-24)$. Легко увидеть, что уравнение является линейным (узнать как решаются линейные уравнения можно тут.)

Раскроем скобки в правой части уравнения: $3x+24=7x-7\cdot 24$. Перенесём все слагаемые содержащие переменную в правую часть, а всё что не содержит $x$ в левую, получим: $24+7\cdot 24=7x-3x$. После упрощения получили $192=4x$, разделим обе части уравнения на коэффициент при неизвестном, т.е на $4$, тогда получим $x=48$.

Осталось истолковать ответ.
За переменную $x$ мы обозначали количество монет в мешке, значит в сундуке в три раза больше т.е $3x$.

Монет в мешке: $48$

Монет в сундуке: $48\cdot 3=144$

Пусть в первый мешок насыпали $3x$ кг муки, тогда во второй мешок насыпали $x$ кг. Если сложим количество кг в каждом мешке, то получим $3600$ кг муки. Имеем: $3x+x+800=3600$, решим уравнение классическим методом.

Все слагаемые содержащие $x$ оставим слева, а всё остальное перенесём в правую часть равенства: $3x+x=3600-800$, упростим обе части; $4x=2800$ поделим обе части равенства на $4$ и получим ответ: $x=700$.

Ответ.
За переменную $x$ мы обозначали количество муки во втором мешке, по условию в первом в три раза больше.

Муки в первом мешке: $700\cdot 3=2100$ кг.

Муки во втором мешке: $700$ кг.

Пусть во втором мешке $x$ кг картофеля, тогда в первом мешке $4x$ кг. Из первого взяли $40$ кг, тогда в первом стало: $4x-40$. Во второй мешок насыпали $5$ кг и теперь в нём: $x+5$ кг картошки. Нам известно, что после этих изменений количество картофеля в мешках стало поровну, запишем это с помощью линейного уравнения:

Решим это линейное уравнение. Все слагаемые содержащие переменную перенесём влево, а свободные члены вправо и получим:

Избавимся от коэффициента при неизвестном и получим ответ:

Ответ.
За переменную $x$ мы обозначали количество кг картошки во втором мешке, по условию в первом в четыре раза больше.

Картошки в первом мешке: $15\cdot 4=60$ кг.

Картошки во втором мешке: $15$ кг.

Пусть машины едут со скоростью $v$ км/ч, тогда после ускорения первой машины её скорость стала: $v+20$ км/ч, а скорость второй машины после замедления стала: $v-20$ км/ч. Нам известно по условию, что после изменения скоростей машин, первая проходит за два часа ровно столько, сколько вторая за четыре, тогда имеем:

По известной нам формуле $S=vt$ ($S$ — расстояние, $v$ — скорость, $t$ — время)

Сократим обе части равенства на $2$, тогда получим: $v+20=2(v-20)$. Раскроем скобки в правой части уравнения и сгруппируем все переменные в правой части равенства.

Ответ.
В качестве неизвестной величины в задаче мы взяли $v$ (первоначальную скорость машин).

Первоначальная скорость машин: $v=60$ км/ч.

Пусть во вторую бригаду привезли $x$ кг раствора цемента, тогда в первую бригаду привезли $x-50$ кг. Через 3 часа работы у первой бригады осталось $x-50-3\cdot 150$ кг цемента, а у второй $x-3\cdot 200$ кг.

По условию известно, что через 3 часа работы в первой бригаде осталось в 1,5 раза больше цемента, чем во второй, тогда имеем:

$$x-50-3\cdot 150=1,5(x-3\cdot 200)$$

Осталось решить данное уравнение относительно $x$ и истолковать ответ.

Упростим и раскроем скобки в правой части, тогда получим:

Если вам неудобно работать с десятичными дробями, то вы всегда можете их переводить в рациональный вид: $1,5=\frac<15><10>=\frac<3><2>$.

Запишем с учётом перевода дробей и упростим:

Перенесём слагаемые содержащие переменную в правую сторону, а всё остальное в левую:

Домножим обе части на 2 и получим ответ:

Ответ.
В качестве переменной в задаче мы взяли $x$ (кол-во кг цемента который привезли во вторую бригаду), по условию в первую привезли на 50 кг меньше, а значит $x-50$

Кол-во цемента в первой бригаде: $800-50=750$ кг.

Кол-во цемента во второй бригаде: $800$ кг.

Задачи для самостоятельного решения

По контракту работникам причитается 48 франков за каждый отработанный день, а за каждый неотработанный день с них вычитается по 12 франков. Через 30 дней выяснилось, что работникам ничего не причитается. Сколько дней они отработали в течение этих 30 дней?

Пусть работники отработали $n$ дней, тогда $30-n$ дней они не отработали.

В итоге мы понимаем, что за $n$ рабочих дней они зарабатывают $48n$ франков и с них вычитается за $30-n$ не отработанных дней по $12(30-n)$ франков. Тогда ясно, что: $48n-12(30-n)=0$

Ответ: Рабочие отработали 6 дней.

Кирпич весит фунт и полкирпича. Сколько фунтов весит кирпич?

Пусть целый кирпич весит весит $k$ фунтов, тогда имеем:

1 фунт и половина кирпича = целый кирпич.

Бутылка с пробкой стоит 10 копеек, причем бутылка на 9 копеек дороже пробки. Сколько стоит бутылка без пробки?

Пусть бутылка стоит $b$ копеек, а пробка $p$ копеек, тогда:

$b+p=10$ и $b=p+9$, подставив значение $b$ в первое равенство — получим:

Т.е пробка стоит пол копейки, тогда бутылка $9,5$ копеек.

Ответ: 9,5 копеек стоит бутыка без пробки.

На свитер, шапку и шарф израсходовали 555 г шерсти, причем на шапку ушло в 5 раз меньше шерсти, чем на свитер, и на 5 г больше, чем на шарф. Сколько шерсти израсходовали на каждое изделие?

Пусть на свитер потратили $5x$ г шерсти, тогда на шапку ушло $x$ г и на шарф потребовалось $x-5$ г, имеем:

Ответ: На шапку ушло $80$ г, на свитер $5\cdot 80=400$ г, на шарф $80-5=75$ г.

Три пионерских звена собрали для школьной библиотеки 65 книг. Первое звено собрало на 10 книг меньше, чем второе, а третье — 30% того числа книг, которое собрали первое и второе звено вместе. Сколько книг собрало каждое звено?

Пусть второе звено собрало $x$ книг, тогда первое собрало $x-10$ книг, а третье $0,3(2x-10)$, имеем:

$$2x-10+0,3\cdot 2x-0,3\cdot 10=65$$

$$2x+0,3\cdot 2x=65+10+0,3\cdot 10$$

Ответ: Первое звено собрало $30-10=20$ книг, второе $30$ книг, третье $0,3(60-10)=15$ книг.

Источник

Составмть условия задачи КАТЯ СОСТАВИЛА 6 ПРИМЕРОВ С ОТВЕТОМ 8, А ВАЛЯ — 10 ТАКИХ ПРИМЕРОВ ?

Составмть условия задачи КАТЯ СОСТАВИЛА 6 ПРИМЕРОВ С ОТВЕТОМ 8, А ВАЛЯ — 10 ТАКИХ ПРИМЕРОВ .

НА СКОЛЬКО БОЛЬШЕ ПРИМЕРОВ СОСТАВИЛА ВАЛЯ, ЧЕМ КАТЯ?

Катя — 6 пр с отв на 8

Катя составила 6 примеров с ответом 8 , валя — 10 таких примеров ?

Катя составила 6 примеров с ответом 8 , валя — 10 таких примеров .

На сколько больше примеров составила валя чем катя ?

Катя составила 6 примеровс ответом 8, а Валя — 10 таких примеров?

Катя составила 6 примеровс ответом 8, а Валя — 10 таких примеров.

Еще:  Демоверсия ОГЭ 2021 по биологии 9 класс ФИПИ задания с ответами

На сколько больше примеров составил Валя, чем Катя?

Катя составила 6примеров с ответом 8, а Валя — 10таких примеров ?

Катя составила 6примеров с ответом 8, а Валя — 10таких примеров .

На сколько больше примеров составила Валя , чем Катя?

Катя составила 6 примеров с ответом 8 а валя 10 таких примеров?

Катя составила 6 примеров с ответом 8 а валя 10 таких примеров.

На сколько больше примеров составила валя, чем катя.

Валя решила 7 примеров на сложнение , а на вычитание — на 5 примеров меньше ?

Валя решила 7 примеров на сложнение , а на вычитание — на 5 примеров меньше .

Сколько всего примеров решила Валя?

Три сестры — Таня, Катя и Валя — учатся в разных классах одной школы?

Три сестры — Таня, Катя и Валя — учатся в разных классах одной школы.

Таня старше Кати, а Катя старше Вали.

Кто старше : Таня или Валя?

Катя составила 6 примеров с ответом 8 , а валя 10 таких примеров ?

Катя составила 6 примеров с ответом 8 , а валя 10 таких примеров .

На скользка больше примеров составила валя чем катя.

Страница 84 Задание 4 – Математика 1 класс (Моро) Часть 2 КАТЯ СОСТАВИЛА 6 ПРИМЕРОВ С ОТВЕТОМ 8, А ВАЛЯ — 10 ТАКИХ ПРИМЕРОВ?

Страница 84 Задание 4 – Математика 1 класс (Моро) Часть 2 КАТЯ СОСТАВИЛА 6 ПРИМЕРОВ С ОТВЕТОМ 8, А ВАЛЯ — 10 ТАКИХ ПРИМЕРОВ.

НА СКОЛЬКО БОЛЬШЕ ПРИМЕРОВ СОСТАВИЛА ВАЛЯ, ЧЕМ КАТЯ?

Катя составила 6 примеров с ответом 8, а Валя — 10 таких примеров?

Катя составила 6 примеров с ответом 8, а Валя — 10 таких примеров.

На сколько больше примеров составила Валя , чем катя?

Катя составила6 примеров с ответом 8, а Валя — 10таких примеров?

Катя составила6 примеров с ответом 8, а Валя — 10таких примеров.

На сколько больше примеров составила Валя, чем катя?

Вы зашли на страницу вопроса Составмть условия задачи КАТЯ СОСТАВИЛА 6 ПРИМЕРОВ С ОТВЕТОМ 8, А ВАЛЯ — 10 ТАКИХ ПРИМЕРОВ ?, который относится к категории Математика. По уровню сложности вопрос соответствует учебной программе для учащихся 1 — 4 классов. В этой же категории вы найдете ответ и на другие, похожие вопросы по теме, найти который можно с помощью автоматической системы «умный поиск». Интересную информацию можно найти в комментариях-ответах пользователей, с которыми есть обратная связь для обсуждения темы. Если предложенные варианты ответов не удовлетворяют, создайте свой вариант запроса в верхней строке.

Буквы — это зашифрованные цифры : А = 5 Б = 1 В = 2 Вроде бы так.

Если х = — 2, то у = — 8 Если х = — 1, то у = — 5 Если х = 0, то у = — 2 Если х = 1, то у = 1 Если х = 2, то у = 4.

3 / 7 от 6, 3 = 2, 7 0, 35 от 2, 8 = 0, 98.

Cos(2b) + sin ^ 2(b) = cos ^ 2(b) — sin ^ 2(b) + sin ^ 2(b) = cos ^ 2(b).

Ей на 7 дней хватает 56 кг овса Следовательно на 90 дней ей хватит 90 / 7 * 56 = 720 кг А двум лошадям 720 * 2 = 1440 кг Ответ : 1440 кг.

А)15га = 150000м² 7 га 3000 м = 73000м² б) 24 га = 2400 ар 13га 5а = 1305 ар 25000м = 250 ар.

Решение : 96 : 8 = 12км / мин первоначальная скорость 12 + 2 = 14км / мин увеличилься его скорость 40×14 = 560км пролетит за 40 мин.

/ Хрустальные — 16 шт \ — — — — — — — — — — | (стрелка) Фарфоровые — ? На 2 б — — — — — — — | 1)16 + 2 = 18(в) ответ : 18 фарфоровых ваз.

Хрустальные вазы — 16 в. Фарфоровые вазы — ? В. , на 2 больше, чем хрустальных —ГЛАВНЫЙ ВОПРОС ! ОБВОДИМ В КРУЖОК ! Решение : 1) 16 + 2 = 18 (ваз) — фарфоровых в магазине . Ответ : 18 ваз.

Номер 1040 A)5×2 = 10 — среднее арефметическое двух чисел. B)2×5 = 10 — среднее арефметическое пяти чисел.

Источник

ГДЗ по математике

ГДЗ Математика 2 класс Моро, Бантова, Бельтюкова, Волкова, Степанова

Математика – предмет, который зачастую больше половине класса дается нелегко. А с переходом в среднюю школу программа усложняется, дети получают еще большую нагрузку, с которой не справляются, успеваемость, а главное – желание учиться стремительно падают. Что еще важно – родителям уже в средних классах нередко многие задания тоже оказываются непосильными. В результате в выполнении домашних заданий участвует вся семья, ребенок устает, родители на нервах и все вечера идут насмарку. Вместо того, чтобы отдохнуть и провести время семьей, все усиленно делают домашнюю работу.
Мы предлагаем Вам немного упростить жизнь и себе, и ребенку. Готовые домашние задания по математике – это находка с учетом сложности учебной программы и объемов заданий на дом. Это не значит, что нужно дать ребенку просто списать решение и забыть. Пусть пробует решить сам, а если не получается, то от того, что Вы подсмотрите метод и алгоритм будет только польза. Со следующим аналогичным заданием он уже сможет без проблем разобраться сам.

Почему иметь решебник под рукой – это плюс для учебы школьника?

Еще один момент, который вызывает неизменные споры – количество домашних заданий. У нас программа действительно сложная, а если учесть, что ребенок еще посещает кружки, дополнительны занятия, которые нужны для его всестороннего развития, то времени делать столько домашней работы просто не хватает. К тому же все то, что не удалось пройти на уроке, зачастую задается дополнительно на дом. Родителям приходится самим садиться за учебник, разбираться в теме и объяснять ребенку. Когда же найти на это время, если рабочий день в лучшем случае завершается не раньше 18:00? Сборники готовых домашних заданий помогут родителям быстро понять суть задания и решения, дать подсказу ребенку и без нервов сделать все уроки. Имея под рукой решалку, Вы также сможете в разы быстрее проверять домашние задания детей по вечерам. Если болели и пропустили объяснения учителя, то по готовому алгоритму решения будет значительно проще наверстать упущенное.

Точные решения и ответы онлайн

ГДЗ по математике – это не новинка на рынке. Печатные издания уже добрый десяток лет продаются в книжных магазинах. Но их минус в том, что на каждый учебный год, предмет и автора пособия нужно покупать отдельную книгу. Вы тратите деньги и не получаете уверенности, что ответы правильные. На нашем сайте собраны решения по 7 предметам и всем использующимся в школьной программе учебникам. Ответы мы проверяем и публикуем вручную, поэтому ошибки исключены. Пользуйтесь и проходите любые школьные испытания с нашей помощью!

Источник